12,100 research outputs found

    A low-mass faraday cup experiment for the solar wind

    Get PDF
    Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism

    Single polymer dynamics: coil-stretch transition in a random flow

    Full text link
    By quantitative studies of statistics of polymer stretching in a random flow and of a flow field we demonstrate that the stretching of polymer molecules in a 3D random flow occurs rather sharply via the coil-stretch transition at the value of the criterion close to theoretically predicted.Comment: 4 pages, 5 figure

    Elastic turbulence in curvilinear flows of polymer solutions

    Full text link
    Following our first report (A. Groisman and V. Steinberg, \sl Nature 405\bf 405, 53 (2000)) we present an extended account of experimental observations of elasticity induced turbulence in three different systems: a swirling flow between two plates, a Couette-Taylor (CT) flow between two cylinders, and a flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of width of the region available for flow to radius of curvature of the streamlines. The experiments were carried out with dilute solutions of high molecular weight polyacrylamide in concentrated sugar syrups. High polymer relaxation time and solution viscosity ensured prevalence of non-linear elastic effects over inertial non-linearity, and development of purely elastic instabilities at low Reynolds number (Re) in all three flows. Above the elastic instability threshold, flows in all three systems exhibit features of developed turbulence. Those include: (i)randomly fluctuating fluid motion excited in a broad range of spatial and temporal scales; (ii) significant increase in the rates of momentum and mass transfer (compared to those expected for a steady flow with a smooth velocity profile). Phenomenology, driving mechanisms, and parameter dependence of the elastic turbulence are compared with those of the conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure

    Evidence of a Solar Origin for Pressure Balance Structures in the High-Latitude Solar Wind

    Get PDF
    Ulysses observations of the high-latitude solar wind have shown that on time scales of \u3c 1 day, the polar wind is dominated by pressure balance structures (PBSs). Fluctuations of the plasma beta within PBSs appear to be strongly correlated with fluctuations in the helium abundance. The correlation occurs in both the northern and southern hemispheres. In addition, a mechanism is apparently at work in the high-latitude solar wind that dissipates the beta/He correlation over a distance of a few AU. Solar wind composition is established at the base of the corona; thus, the He abundance signature strongly suggests the observed solar wind PBSs are associated with structures low in the solar atmosphere. In particular, high-beta structures appear to originate in locations of enhanced He abundance. We suggest an interpretation of the high-beta portion of PBSs as the solar wind extensions of polar plumes

    Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions

    Full text link
    The microscopic description of heavy-ion reactions at low beam energies is achieved within hadronic transport approaches. In this article a new approach SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced and applied to study the production of non-strange particles in heavy-ion reactions at Ekin=0.42AE_{\rm kin}=0.4-2A GeV. First, the model is described including details about the collision criterion, the initial conditions and the resonance formation and decays. To validate the approach, equilibrium properties such as detailed balance are presented and the results are compared to experimental data for elementary cross sections. Finally results for pion and proton production in C+C and Au+Au collisions is confronted with HADES and FOPI data. Predictions for particle production in π+A\pi+A collisions are made.Comment: 30 pages, 30 figures, replaced with published version; only minor change

    Preparation of pure and mixed polarization qubits and the direct measurement of figures of merit

    Get PDF
    Non-classical joint measurements can hugely improve the efficiency with which certain figures of merit of quantum systems are measured. We use such a measurement to determine a particular figure of merit, the purity, for a polarization qubit. In the process we highlight some of subtleties involved in common methods for generating decoherence in quantum optics.Comment: 5 pages, 3 figures, 1 tabl

    Elastic turbulence in von Karman swirling flow between two disks

    Full text link
    We discuss the role of elastic stress in the statistical properties of elastic turbulence, realized by the flow of a polymer solution between two disks. The dynamics of the elastic stress are analogous to those of a small scale fast dynamo in magnetohydrodynamics, and to those of the turbulent advection of a passive scalar in the Batchelor regime. Both systems are theoretically studied in literature, and this analogy is exploited to explain the statistical properties, the flow structure, and the scaling observed experimentally. Several features of elastic turbulence are confirmed experimentally and presented in this paper: (i) saturation of the rms of the vorticity and of velocity gradients in the bulk, leading to the saturation of the elastic stress; (ii) large rms of the velocity gradients in the boundary layer, linearly growth with Wi; (iii) skewed PDFs of the injected power, with exponential tails, which indicate intermittency; PDF of the acceleration exhibit well-pronounced exponential tails too; (iv) a new length scale, i.e the thickness of the boundary layer, as measured from the profile of the rms of the velocity gradient, is found to be relevant and much smaller than the vessel size; (v) the scaling of the structure functions of the vorticity, velocity gradients, and injected power is found to be the same as that of a passive scalar advected by an elastic turbulent velocity field.Comment: submitted to Physics of Fluids; 31 pages, 29 figures (resolution reduced to screen quality

    Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence

    Get PDF
    Using a two-photon interference technique, we measure the delay for single-photon wavepackets to be transmitted through a multilayer dielectric mirror, which functions as a ``photonic bandgap'' medium. By varying the angle of incidence, we are able to confirm the behavior predicted by the group delay (stationary phase approximation), including a variation of the delay time from superluminal to subluminal as the band edge is tuned towards to the wavelength of our photons. The agreement with theory is better than 0.5 femtoseconds (less than one quarter of an optical period) except at large angles of incidence. The source of the remaining discrepancy is not yet fully understood.Comment: 5 pages and 5 figure

    Conditional probabilities in quantum theory, and the tunneling time controversy

    Get PDF
    It is argued that there is a sensible way to define conditional probabilities in quantum mechanics, assuming only Bayes's theorem and standard quantum theory. These probabilities are equivalent to the ``weak measurement'' predictions due to Aharonov {\it et al.}, and hence describe the outcomes of real measurements made on subensembles. In particular, this approach is used to address the question of the history of a particle which has tunnelled across a barrier. A {\it gedankenexperiment} is presented to demonstrate the physically testable implications of the results of these calculations, along with graphs of the time-evolution of the conditional probability distribution for a tunneling particle and for one undergoing allowed transmission. Numerical results are also presented for the effects of loss in a bandgap medium on transmission and on reflection, as a function of the position of the lossy region; such loss should provide a feasible, though indirect, test of the present conclusions. It is argued that the effects of loss on the pulse {\it delay time} are related to the imaginary value of the momentum of a tunneling particle, and it is suggested that this might help explain a small discrepancy in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts
    corecore